Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Cureus ; 16(4): e58098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38741855

RESUMO

Aim This study aims to synthesize silver nanoparticles (AgNPs) using herbal formulations derived from Zingiber officinale (ginger) and Ocimum gratissimum and to evaluate their anti-inflammatory and antidiabetic activities in vitro. Methods The synthesis of AgNPs was performed using Z. officinale and O. gratissimum, and the AgNPs were confirmed by analyzing their ultraviolet-vis spectra. The anti-inflammatory activity was assessed using two assays, specifically the bovine serum albumin (BSA) denaturation assay and the egg albumin (EA) denaturation assay. The antidiabetic activity was assessed using the α-amylase inhibitory assay and the ß-glucosidase inhibitory assay. Results This study evaluated the anti-inflammatory and antidiabetic activities of green-synthesized AgNPs using Z. officinale and O. gratissimum. The maximum absorption peak was observed for AgNPs at ~433 nm (wavelength). In the BSA denaturation assay, 78% inhibition was observed at a concentration of 50 µl. Similarly, in the EA denaturation assay, an inhibition of 74% was observed at the same concentration compared to the standard. In terms of antidiabetic activity, when compared to the standard at a concentration of 50 µl, the α-amylase inhibitory assay and the ß-glucosidase inhibitory assay showed approximately 78% and 80% inhibition, respectively. Conclusion The use of Z. officinale and O. gratissimum extracts for the synthesis of AgNPs using a green synthesis method presents a sustainable and environmentally friendly approach. The synthesized AgNPs demonstrated significant anti-inflammatory and antidiabetic efficacy, suggesting their potential application in pharmaceuticals for treating diabetes and inflammation. Further research is necessary to investigate the effectiveness and safety of these substances in humans and to understand their underlying mechanisms of action.

2.
Int Immunopharmacol ; 134: 112100, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728877

RESUMO

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.

5.
Environ Pollut ; 351: 124065, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697253

RESUMO

The effect of peach shell biochar (PSB) amendment on sheep manure (SM) composting was investigated. Five different ratios of PSB were applied (0%, 2.5%, 5%, 7.5%, and 10% PSB), and named T1 to T5, and run 50 days of composting experiment. It was found that PSB (especially 7.5% and 10%) could improve the compost environment, regulate the activity of microorganisms and related enzymes, and promote the decomposition of compost. 7.5% and 10% PSB advanced the heap into the thermophilic stage and increased the maximum temperature, while also increasing the germination index by 1.40 and 1.39 times compared to control. Importantly, 10% PSB effectively retained more than 60% of carbon and 55% of nitrogen by inhibiting the excess release of NH3 and greenhouse gases. High proportion PSB amendment increased the activity of dehydrogenase and cellulase, but inhibited protease and urease. The correlation results indicated that PSB changed the key bacterial genus, and there was a stronger association with environmental factors at 7.5% and 10%. Therefore, 7.5% and 10% peach shell biochar can be used as appropriate proportions to improve composting conditions.

6.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608506

RESUMO

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Assuntos
Cálcio , Solo , Solo/química , Cálcio/metabolismo , Fenômenos Fisiológicos Vegetais , Fertilizantes , Concentração de Íons de Hidrogênio , Produtos Agrícolas
8.
Sci Rep ; 14(1): 9712, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678146

RESUMO

Hydromagnetically associated heat convection can greatly enhance the performance of high-efficiency thermal appliances and renewable energy sources through an optimized design. This investigation examines the production of thermodynamic irreversibility and heat convection for a double lid-driven flow within a partially porous stratified hexagonal enclosure. The top and bottom-wall are moving in the opposite direction with an equal velocity U0. The top-wall and the bottom-wall are kept at temperature Tc and Th (Th  >  Tc) while the slanted walls are assumed to be thermally insulated. A constant magnetic field is employed in the horizontal x-direction. The hexagonal cavity was filled with a micropolar hybrid nanofluid Ag-MgO/water. The system of dimensionless equations was solved by the finite difference method (FDM) associated with successive over-relaxation (SOR), successive under-relaxation (SUR), and Gauss-Seidel iteration tactics and required results are computed with problem specific program in MATLAB code. The results indicate that the Ra and the thickness of the porous layer (Xp) significantly influences heat convection and thermal irreversibility processes. The Nuavg and STotal rises 6.299% and 3.373% as ' ϕ hnf ' enhances from 0 to 4%, respectively. Furthermore, as the values of Ra, Ha, K0, and ϕ hnf increase, Beavg experiences a decline of 53.73%, 11.04%, 38.36%, and 0.09% respectively. Also, movement of wall has a significant impact on heat transfer rates and entropy production. The present study may be extended in numerous areas to mimic the problems like-(1) onset of thermo-mechanical process for solid-fluid interaction in a conduit. (2) Thermos-chemical process with extraction of ions in two-phase fluid for double layer plating on a continuously moving sheet, as region of porous stratum saturated with a class of fluid and region without porous medium occupied with other fluid.

9.
Cureus ; 16(3): e55933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601374

RESUMO

Aim This study involves synthesizing metal nanoparticles (NPs) via the green synthesis method using Millettia pinnata leaf, Acacia auriculiformis bark, and Citrus sinensis peel and comparatively evaluating their antibacterial activity in vitro through the analysis of cobalt oxide NPs (CoNPs), copper NPs (CuNPs), and selenium NPs (SeNPs). This research contributes to eco-friendly approaches for producing functional nanomaterials with potential applications in medicine and environmental remediation. Materials and methods The metal NPs were synthesized using M. pinnata leaf, A. auriculiformis bark, and C. sinensis peel. These leaf extracts act as self-reducing and stabilizing agents. The antibacterial activity was assessed by the well diffusion method. Cultures of pathogenic bacteria species such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa were prepared. NPs were applied to the culture, and zones of inhibition (ZOIs) were measured. The data were statistically analyzed to compare the antibacterial efficacy of the different NPs. Results The successfully synthesized CoNPs, CuNPs, and SeNPs showed distinctive phytochemical properties. CoNPs exhibited the highest ZOI against most bacterial strains, with CuNPs and SeNPs following. CoNPs consistently showed superior performance compared to CuNPs and SeNPs. Conclusion Our study analyzed the bioactivity of metal NPs produced using green synthesis with plant extracts. CoNPs have shown superior antibacterial effectiveness against both Gram-positive and Gram-negative bacteria when compared to CuNPs and SeNPs. This may be due to their larger surface area, smaller size, unique electrical, magnetic, and catalytic properties, as well as their improved contact with the bacterial cell wall and membrane.

10.
Cureus ; 16(3): e57151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38681365

RESUMO

Introduction: The global viral pandemic has rapidly spread, leading to many individuals experiencing the infection. Coronaviruses (CoVs) are among many viral families that infect different types of mammals. They can spread to humans and cause gastrointestinal, neurological, and respiratory problems. The present investigation has discovered flavonoid compounds as promising molecular agents with potential antiviral activity against virus proteins, specifically main protease (Mpro). Methodology: A comprehensive in silico screening of natural compounds derived from medicinal plants was performed in the present study. It included parameter assessments such as drug-likeness, pharmacokinetics, molecular docking, toxicity evaluations, bioavailability assessments, and molecular target exploration. In this systematic approach, the primary objective was to identify potential lead compounds. These phytochemicals were investigated as drug candidates to provide a detailed understanding of their molecular properties. Results: The Mpro binding energy values were -10.637, -12.752, -7.813, -15.732, -6.449, -5.578, -8.037, and -8.52 kcal/mol for isoquercetin, narirutin, myricetin, hesperidin, silibinin, baicalein, taxifolin, and petunidin. Molecular simulations were conducted on two flavonoid compounds - hesperidin and narirutin - stable over 100 nanoseconds in the Coronavirus protein. Conclusions: The computational study we conducted is promising, but to validate the action of these compounds, further experimental studies are needed, with a critical component of the research being the conduct of in vitro and in vivo experiments.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38575360

RESUMO

INTRODUCTION: Young newly married women and first-time parents (FTPs), particularly those living in slum settlements, have a high unmet need for modern contraceptive methods to limit and space births. We describe an intervention in which adolescents and youth sexual and reproductive health (AYSRH) services tailored to FTPs were incorporated into the government's existing family planning (FP) program in 5 cities of Uttar Pradesh. We examined the effect of this intervention on modern contraceptive use among FTPs aged 15-24 years. METHODS: To assess the effect of this pilot, in 2019, 1 year after the implementation of the program, we analyzed community-based output tracking survey data on 549 married women who are FTPs in the pilot cities. These FTPs were compared with 253 women who were FTPs from other cities where the program was implemented without a specific focus on FTPs. Descriptive statistics and multivariate logistic regression analysis were applied to understand the association between exposure to FP information, either through accredited social health activists or through service delivery points, and use of modern contraceptives. RESULTS: Use of modern contraceptives was higher among FTPs in the 5 pilot cities than non-pilot cities (39% vs. 32%; P<.05). The interaction effect of city type and exposure to the information showed a positive association between modern contraceptive use and program exposure, greater in pilot cities than non-pilot cities. CONCLUSIONS: Higher uptake of modern contraceptives among young women may be achieved when an FTP-focused intervention is layered on the government's existing FP programs. Future studies with a longer duration of implementation, in a wider geography, and with longitudinal design are recommended to provide more robust measures of high impact intervention/practices in urban areas.

13.
J R Coll Physicians Edinb ; : 14782715241244839, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576167

RESUMO

A 49-year-old female patient presented at the hospital with a history of herpetic blisters, frequent episodes of vomiting and loose stools, bilateral upper and lower limb weakness, and diminishing sensorium. She was diagnosed with hyponatraemia and respiratory failure and later became unconscious with absent brainstem reflexes. The patient was initially treated for herpetic encephalitis, a chronic obstructive pulmonary disease with acute exacerbation, hyponatraemia and neuroparalytic snake bite. Further evaluation, however, identified the uncommon Guillain Barre syndrome presentation with overlap of Bickerstaff brainstem encephalitis. This is an uncommon disorder characterised by the involvement of higher mental functions, fixed dilated pupils, absent brainstem reflexes and quadriplegia that resembles a neuroparalytic snake bite and brain death. After receiving intravenous immunoglobulins for treatment, the patient completely recovered.

14.
Heliyon ; 10(7): e28765, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586349

RESUMO

The implementation of integrated potassium management presents a viable approach for augmenting plant growth, yield, and nutrient uptake while enhancing soil nutrient availability. A field experiment was executed during the rabi season of 2020, employing a randomized complete block design encompassing eight treatments involving standard (100%) and reduced (75% and 50%) rates of the recommended dose of potassium (RDK) administered through muriate of potash (MOP). Treatments included variations in the incorporation/exclusion of plant growth-promoting rhizobacteria (PGPR), farmyard manure (FYM) at 25% of potassium recommendation, and foliar application of nano potash. The use of 100% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T8) exhibited significant enhancements in green fodder yield (64.0 ± 2.2 t ha-1) over control with no potassium application (47.3 ± 3.7 t ha-1) and found at par with and 75% RDK + 25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7). These treatments yielded maximum percent increase for plant height (34.9%), leaf count (38.5%), leaf dimensions (28.8-31.5%), stem girth (25.84%), root volume (27.0%), and root length (37.64%), observed at the harvest stage compared to control (T1-no potassium application). The treatment T8 was on par with T7 and recorded highest uptake of macro (N, P, and K) and micro (Zn, Fe, Cu, and Mn) nutrients. While soil parameters such as available nitrogen and potassium levels were notably increased through the application of treatment T7 across various treatment combinations and found significantly superiority over treatment T8. Multivariate analysis also highlighted treatment T7 is more efficient in maintaining sustainability. Hence, based on the present findings it can be concluded that application of 75% RDK +25% K augmentation through FYM + PGPR and nano K fertilizer spray at 25 and 40 DAS (T7) can be recommended for achieving enhanced productivity and soil fertility improvement within agricultural systems.

15.
Cureus ; 16(3): e55605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586722

RESUMO

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

16.
Int J Biol Macromol ; 269(Pt 1): 131882, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677684

RESUMO

Bleeding causes ∼5.8 million deaths globally; half of the patients die if rapid hemostasis is not achieved. Here, we report a chitosan-casein (CC)-based nanofibrous polyelectrolyte complex (PEC) that could clot blood within 10 s in the rat femoral artery model in vivo. The nanofiber formation by self-assembly was also optimized for process parameters (concentration, mixing ratio, pH, and ultrasonication). Results showed that increasing the concentration of chitosan from 10 % to 90 % in the formulation increased the productivity (r = 0.99) of PECs but led to increased blood clotting time (r = 0.90) due to an increase in zeta potential (r = 0.98), fiber diameter (r = 0.93), and decreased surface porosity (r = -0.99), absorption capacity (r = -0.99). The pH also influenced the zeta potential of PEC, with an optimized pH of 8.0 ± 0.1 yielding clear nanofibers. Sonication improved the segregation of nanofibers by promoting water removal. The optimized PECs containing chitosan and casein in the ratio of 30:70 (CC30) at a pH of 8.0 and dehydration under sonication could clot the blood within 9 ± 2 s in vitro and 9 ± 2 s in rat femoral artery puncture model. The CC30 formulation did not cause any irritation or corrosion on rat skin. Histopathology and immunohistochemistry of various organs showed that CC30 was biocompatible and non-immunogenic under in vivo conditions.

17.
Bioresour Technol ; 400: 130692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599348

RESUMO

Synthesized allophane was employed in anaerobic digestion of chicken manure to improve the stability and methane production under ammonia inhibition. Adding 0.5 %, 1.0 % and 1.5 % (w/w) allophane increased the methane production by 261 âˆ¼ 350 % compared with the group without allophane addition. Further investigation indicated that the maximum adsorption capacity of allophane for NH4+-N achieved at 261.9 mg/g; it suggested that allophane adsorption potentially alleviated the ammonia inhibition, which also was reflected by the increase in the activity of the related enzyme, such as coenzyme F420. Moreover, allophane addition also intensified the direct interspecies electron transfer (DIET) in anaerobic digestion; it can be well supported by the increased relative abundance of Methanosaeta and Methanosarcina involved in the DIET. Overall, the improved anaerobic digestion via alleviating ammonia inhibition and intensifying DIET by allophane was elucidated comprehensively, which can contribute to the development of a functional additive for efficient anaerobic digestion in practical application.


Assuntos
Amônia , Galinhas , Esterco , Metano , Animais , Amônia/metabolismo , Anaerobiose , Transporte de Elétrons , Metano/metabolismo , Adsorção
18.
Pharmacol Res ; 203: 107167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599470

RESUMO

Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.


Assuntos
Neoplasias , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo
19.
Front Cell Dev Biol ; 12: 1339292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533084

RESUMO

LncRNA-based control affects cardiac pathophysiologies like myocardial infarction, coronary artery disease, hypertrophy, and myotonic muscular dystrophy. This study used a gene-break transposon (GBT) to screen zebrafish (Danio rerio) for insertional mutagenesis. We identified three insertional mutants where the GBT captured a cardiac gene. One of the adult viable GBT mutants had bradycardia (heart arrhythmia) and enlarged cardiac chambers or hypertrophy; we named it "bigheart." Bigheart mutant insertion maps to grin2bb or N-methyl D-aspartate receptor (NMDAR2B) gene intron 2 in reverse orientation. Rapid amplification of adjacent cDNA ends analysis suggested a new insertion site transcript in the intron 2 of grin2bb. Analysis of the RNA sequencing of wild-type zebrafish heart chambers revealed a possible new transcript at the insertion site. As this putative lncRNA transcript satisfies the canonical signatures, we called this transcript grin2bb associated RNA transcript (grin2bbART). Using in situ hybridization, we confirmed localized grin2bbART expression in the heart, central nervous system, and muscles in the developing embryos and wild-type adult zebrafish atrium and bulbus arteriosus. The bigheart mutant had reduced Grin2bbART expression. We showed that bigheart gene trap insertion excision reversed cardiac-specific arrhythmia and atrial hypertrophy and restored grin2bbART expression. Morpholino-mediated antisense downregulation of grin2bbART in wild-type zebrafish embryos mimicked bigheart mutants; this suggests grin2bbART is linked to bigheart. Cardiovascular tissues use Grin2bb as a calcium-permeable ion channel. Calcium imaging experiments performed on bigheart mutants indicated calcium mishandling in the heart. The bigheart cardiac transcriptome showed differential expression of calcium homeostasis, cardiac remodeling, and contraction genes. Western blot analysis highlighted Camk2d1 and Hdac1 overexpression. We propose that altered calcium activity due to disruption of grin2bbART, a putative lncRNA in bigheart, altered the Camk2d-Hdac pathway, causing heart arrhythmia and hypertrophy in zebrafish.

20.
J R Coll Physicians Edinb ; 54(1): 48-54, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462907

RESUMO

The ventriculoperitoneal shunt (VP shunt) is one of the most common neurosurgical procedures performed in daily practice. Various complications following a VP shunt are as follows: post-procedure shunt-related infections, shunt block, shunt displacement or exteriorisation and haemorrhage associated with it. Delayed intraventricular haemorrhage is a relatively uncommon complication following the aforementioned procedure. Here we present an atypical case of a 72-year-old male who presented with subarachnoid haemorrhage with hydrocephalus and underwent a VP shunt, following which the patient had early intraventricular haemorrhage (eIVH) with an unfortunate outcome. Here, we propose pathophysiology and risk factors for eIVH.


Assuntos
Hidrocefalia , Derivação Ventriculoperitoneal , Masculino , Humanos , Idoso , Derivação Ventriculoperitoneal/efeitos adversos , Derivação Ventriculoperitoneal/métodos , Hemorragia Cerebral/etiologia , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Procedimentos Neurocirúrgicos , Fatores de Risco , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...